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1 Introduction

When the ailerons are deflected, the lift distribution is altered in such a way, that there is
a net rolling moment causing the airplane to build up a roll rate. As soon as the airplane
rolls, there is an opposing rolling moment, caused by the change in angle of attack on the
wing section. Simply, it can be said that for a given aileron deflection, the roll rate builds
up to the point, where these two moments are balanced.

The roll helix angle is an induced angle of attack caused due to the deflection of aileron.
The helical path that the wing tip follows is often referred to as the roll helix angle.
One interesting aspect is that this remains essentially constant (steady state) for a given
aileron deflection.

Aileron effectiveness is a measure of how effectively ailerons are controlling the roll mo-
tion of an aircraft. In high-speed or high-stress conditions, the flexible wing structure can
twist due to aileron inputs, reducing their effectiveness.

For the given jet transport aircraft, we consider an antisymmetric lift distribution case.
We have calculated the aileron effectiveness taking into account the opposing moment
generated by the roll helix angle and moment due to the lift distribution over the wing.
The analytical calculations and the MATLAB plot of aileron effectiveness are presented
in the further sections.
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Figure 1: Elastic straight wing with deflected aileron



2 Closed Form Solution of the Aileron Effectiveness Equation

2.1 Field Equation

The field equation for the anti-symmetric lift distribution over a wing is given by,
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Figure 2: Forces and Moments acting on a rolling wing

On the application of strip theory and on further simplification the above equation be-

comes,
d29 2 2 p . 2
= (W5 + kb ) y = kX1, (y) (2)
where,
md 1 dCT  AChmac gce - C

Implementing the boundary conditions that there is a rigid support at the root of the
wing, i.e., 0(0) =0'(l) =0
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Figure 3: Damping and Inertial Forces acting on a rolling wing

The coefficients are taken as,
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2.2 Aileron Effectiveness

For steady rolling condition, p is constant, hence the roll acceleration p would be zero.
Therefore,

This can be further simplified as,
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Or in other terms,
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The coefficient of lift has two components as given by the following equation,
C,=Cl +Cf (10)

where C7 is the rigid component of lift and C} corresponds to the elastic component of
lift. The rigid component can be further expressed as,
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where [ is the aileron deflection and <£) is the roll helix angle. The elastic component
u

of lift can be further expressed as,
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Substituting Eq. 10 - Eq. 12 in Eq. 9,
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Rearranging the terms and substituting p = 0,
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Rearranging the terms,
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The above equation (Eq. 16) represents the aileron effectiveness. Substituting Eq. 5 and
Eq. 6 in Eq. 16,
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we intend to derive the closed form solution of the above equation. The change in the
effective angle of attack due to the rolling motion of the wing can be expressed as,
Py
eff " (18)
This can be justified due to the introduction of the spanwise component of velocity at
any location y and must be negative since as the wing rolls the effective angle of attack
decreases. This in turn affects the lift coefficient,
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Substituting the a.yy,
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This would be the rigid component of lift, thus this can be written as,
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Simplifying this further and expressing it in terms of the roll helix angle we get,
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Now taking the derivative with respect to the roll helix angle we obtain the relation,

Thus Eq. 17 can be reduced to,
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Simplifying this further,
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The numerator of Eq. 25 is given by,
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On simplification,
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Splitting the integral,

l l

sin \(l —1y) . dCT (y) -y
/Cla Y k2[ cos Al sm)\y] dy—I—/ )5

0 A
l

- /Cla Y ko [La(y) (1 —cos A(y — lh))] - dy
h

On further simplification and substitution of I,(y) = 1 in the limits of | — [y,
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On integrating,
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On further simplification the numerator results in the following expression,
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Substituting ks we obtain the following relation,
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The denominator of Eq. 25 is given by,
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Simplifying,
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On integrating,
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Simplifying we get the following relation,
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Substituting Eq. 33 and Eq. 38 in Eq. 25 we get,
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The final form of the equation is given by,
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The above equation is the closed form solution of the aileron effectiveness equation. The
following figure shows the variation of the roll helix angle with Al.
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Figure 4: Aileron effectiveness of uniform wing as a function of Al
3 Integral Form of the Aileron Effectiveness Equation

3.1 Field Equation

The field equation for the anti-symmetric lift distribution over a wing is given by,
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3.2 Aileron Effectiveness

The solution of the above equation is given by,
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O(y) is given by,
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Assuming that the aerodynamic and elastic axes coincide, i.e., e = 0
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The antisymmetrical twist distribution can be given as,
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C3(y) is neglected since p = 0, given a steady roll rate. Substuting the above values in
Eq. 16 we get,
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Equating the numerator to zero, we obtain the reversal dynamic pressure,
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In the problem assigned, since the values of C? are not known at different spanwise
locations, it is therefore not possible to calculate the reversal dynamic pressure and hence
its variation with the Mach number.

4 Conclusion

The aileron effectiveness is crucial to understanding the roll control dynamics of an air-
craft, especially in the context of flexible elastic wings. The aileron effectiveness was
analytically derived and the polar plotted using MATLAB indicates the variation of the
control authority with Al.

5 Appendix: MATLAB Code

1 A=0.5;

> B= -0.6;

3 1_ratio= 0.6;

1+ x= linspace(0,1.4,100)

¢ for i =1:numel (x)

s numerator = ((cos(0.6*x(i)) / cos(x(i))) - 1) * A + ...
((cos(0.6xx(i)) / cos(x(i))) - 1 - (x(i)~2x(1 - 0.36) / 2))x*B

11 denominator = ((tan(x(i)) / x(i)) - 1);
12

15 result (i) = numerator / denominator;

14 end

16 plot(x,result)
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