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1 Introduction

The Maslen’s method is a theory based on the assumption of a thin shock layer. It is a comparatively
simple method and has frequent application even today for the approximate analysis of hypersonic
inviscid shock layers. Moreover, Maslen’s method gives results for the flow field over blunt as well
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as slender bodies.

2 MATLAB Code

o

% HSA project
clear all
clc
format long;
%% free stream properties
Y=1.4; % free stream specifi
r=287; % gas constant
M=10; %mach no. is condider
P=10000; % free stream press
T=300; % free stream tempera
rho=P/ (287*T); % free stream
cp=Y*r/(Y-1); %cp
V=Mx (Y*r*T) "0.5; % velocity
%% assuming shock shape and
R=1; %nose radius
d=(0.386xexp(4.67/M"°2))*R; %
Rc=(1.386*exp(1.8/(10-1)"0.1
b=pi/20; % b= asymptotic sho
y=linspace (0,5,50);
x=—(R+d-Rc* (cot (b) "2) « ((((1+
for i=l:numel(y)-1
dx (i)=x(i+1)-x(1i);
dy (1) =y (i+1) -y (i) ;
sl(i)=dy(i)/dx(i);% sl=slop
end
beta=atan(sl);
n=numel (sl);
for i=1:n-1
dX (1)=x(i+1)-x(1);

c heat ratio (gamma)

to be infinity

ure in pa

ture in k

density in kg/m"3

parameters
d-shock standoff distance
) ) *R; %Rc- shock radius of curvature at vertex

ck wave angle

(y."2+tan(b) "2)/Rc"3)).".85)-1));



30 dy (i)=sl(i+1)-sl(di);
31 dsl (i)=dY (i) /dX(1i);
32 end

33 Dbetal=atan(dsl);

34 for i=1:numel (dsl)

35 if abs(dsl(1,1i))>0

36 s(i)=(1+(sl(i))"2)"1.5/abs(dsl(i));
37 else

38 break

39 end

40 end

41 % shock defn ends

42 %Properties calculated just after the shock using approximated oblique %$shock relations
43 P1l=(1+((2*xY/(Y+1)) ((M"2(sin(beta)) . 2)-1))) *P;

44  rhol=(1+((Y+1)M 2 (sin(beta))."2)./(((Y-1)M"2(sin(beta))."2)+2))*rho; % density ratio
45 T1=((P1/P).=*(rho./rhol))«T; %temperature ratio

46 ul=Vxcos (beta);

47 PO=P* ((1+(Y-1)*M"2/2) " (Y/(Y-1)));

48 TO=T* (1+(Y-1)*M"2/2);

49 Mn=M*sin (beta);

50 Mnl=[(Mn."2+(2/(Y-1)))./([2*Y*Mn."2/(Y-1)]1-1)1.70.5;

51 theta=atan (2+cot (beta).[((M "1 (sin(beta)). 2)-1)]1./((M "2 (Y+cos (2+beta)))+2));

52 Ml=Mnl./sin (beta-theta);

53 PO1=Pl.* ((1+(Y-1)*M1."2/2).7(Y/(Y-1)));

54 dels=-8.314.xlog(P01./PO);

55 qgl= 0.5%xrhol*V~"2;

56 W=rho.xV.xy;

57 %% iterartive meslon's method

58 for i=1:numel (s)

59 for j=1:1i

60 if j==

61 P2(i,3)=Pl(1);

62 T2 (i, J)=T1(1);

63 rho2 (i, j)=P1(1i)/(287«T1(1i));

64 u2 (i, j)=(2*cp* (TO-T1(i))) "0.5;

65 else

66 P2(i,3)=P2(i,j-1)+((ul(i)/s(i))*x(W(i-1)-W(i)));

67 T2 (i, 3)=(exp ((rxlog(P2(i,j)/P2(i,j-1))-dels(i))/cp))*T1l(i);
68 rho2 (i, 3)=P2(i,J)/(287«T2(i,3));

69 u2 (i, j)=(2*cp* (T0-T2(i,3))) ~0.5;

70 end

71 if j<i

72 dn (i, 3)=(2* (W(i)-W(i-3)))/ (rhol (i) *ul (i)+rho2(i,J)*u2(i,J));
73 ang (i, j)=pi/2-beta(i);

74 x2(i,3j)=x(1)+dn (i, j) xcos(ang (i, J));

75 v2(i,j)=y(i)-dn(i, j)*sin(ang(i, j));

76 end

7 end

78 end

79 for i=1:47

80 xb(1)=x2(i+1,1);

81 yb(i)=y2 (i+l,1);

82 Pb(i)=P2 (i+1,1i);

83 end

84 %% Plots

85 figure(l),plot(x,y,"'."'",xb,yb,"'-");
86 title('Shock and body shape');

87 xlabel ('x-cordinate');

88 ylabel ('y-cocrdinate');

89 legend('shock shape', 'Body');

90 figure(2),plot (xb(2:numel (xb)),Pb(2:numel (xb)),"'-——");
91 title('Pressure distribution');

92 xlabel ('x-cordinate');

93 ylabel ('Pressure (pa)');



3 Preliminary Results

Some preliminary results are given below,
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Figure 1: Shock and Body Shape

<108 Pressure distribution
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Figure 2: Pressure Distribution

4 Methodology

Consider the curvilinear coordinate system, where x and y respectively, are parallel and perpendic-
ular to the shock, and u and v are corresponding components of velocity. For simplicity we will
assume a two dimensional flow; however, Maslen’s method also applies to axisymmetric flow. Now
we assume that the shock layer is thin and hence the streamlines are essentially parallel to the shock
wave. In a streamline-based coordinate system, The momentum equation for the present coordinate
system is given by, ,

ol =2 )
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Where R is the local streamline radius of curvature. For thin shock-layer assumptions,

=2 2)
Where Rg is the local shock radius of curvature. Further simplifying,
This leads to the expression, 5

5 o

According to the earlier assumptions made of thin shock layer, we can consider u &~ ug where ug is
the the velocity just behind the shock. By this assumption we are re-asserting the assumption that
all the streamlines are parallel to the shock, therefore,

Ip us
e o)
Y Rg

We can integrate the above equation between a point in the shock layer where the value of the
stream function as ¢» and just behind the shock layer where 1) = 1g. Thus,

us ()
s

p(z,y) = ps(x) + Rs(z) [V —1bs(z)] (6)

Using the above equation we can build an inverse method where a shock wave shape will be assumed
for a body to solve the above equation and then obtain the shape and pressure distribution over
the body. When the obtained body shape matches with the real shape then we can get the shock
shape and pressure distribution. The procedure described by Maslen can be summarized as,

e Assume a shock-wave shape. In a sense, Maslen’s method is an inverse method, where a shock
wave is assumed and the body that supports thin shock is calculated.

e Hence, all flow quantities are known at a point just behind the shock, from the oblique shock
relations. The value for v is known from,

e Choose a value of 1), where 0 < 1 < 1. This identifies a point 2 inside the flowfield along
the y axis, where ¢ = 1),. (The precise value of the physical coordinate y, will be found in a
subsequent step).

e Calculate the pressure at point 2 from the equation,
Uy
P2=p1+R—(¢2—¢1) (8)
S

e The entropy at point 2, s, is known because the streamline at point 2, corresponding to v =
19, has come through that point on the shock wave, point 2’, where ¥y = 15, and where

¢2’ = "/)2 = poovochZ (9)
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or,
_ Yo
Poo Vo

Therefore, hs is obtained from the above equation, which locates point 2’ on the shock.
In turn, sy is known from the oblique shock relations, and because the flow is isentropic
along any given streamline sy = so. Calculating the enthalpy hs and density ps from the
thermodynamics equations of state,

ha (10)

hy = h(s2,p2) p2 = p(S2,p2) (11)

Calculating the velocity at point 2 from the adiabatic equation (total enthalpy is constant),

U (12)

ho = hoo + 22
2

Where h, is the total enthalpy, which is constant throughout the adiabatic flow-field. In turn,

u2
ho = hy + ?2 (13)

Thus,
Ug = Q(ho — hz) (14)

All of the flow quantities are now known at point 2. Now repeat the preseding steps for all
points along the y axis between the shock (point 1) and the body (point 3). The body surface
is defined by 1 = 0.

The physical coordinates y, which corresponds to a particular value of ¢, can now be found by
integrating the definitions of the stream function (which is essentially the continuity equation).
Since,

dy
Then,
¥s g
= % (16)
v Pu

Where p and u are known as a function of ¥ from the preceeding steps. This also locates the
body coordinate, where
Vs dy)
Yp = / — (17)
0o pPu

This procedure is repeated for any desired number of points along the specified shock wave,
hence generating the flowfield and body shape which supports that particular shock.



